Nonparametric and Semiparametric Mixed Model Methods for Phase I Profile Monitoring
نویسندگان
چکیده
Profilemonitoring is an approach in quality control best usedwhere the process data follow a profile (or curve). Themajority of previous studies in profile monitoring focused on the parametric modeling of either linear or nonlinear profiles, with both fixed and random-effects, under the assumption of correctmodel specification. Ourwork considers those cases where the parametricmodel for the family of profiles is unknown or, at least uncertain. Consequently, we considermonitoring profiles via twomethods, a nonparametric (NP ) method and a semiparametric procedure that combines both parametric and NP profile fits. We refer to our semiparametric procedure as mixed model robust profile monitoring (MMRPM). Also, we incorporate a mixed model approach to both the parametric and NP model fits to account for the autocorrelation within profiles and to deal with the collection of profiles as a random sample from a common population. For each case, we propose two Hotelling’s T 2 statistics for use in Phase I analysis to determine unusual profiles, one based on the estimated random effects and one based on the fitted values and obtain the corresponding control limits. Our simulation results show that ourmethods are robust to the common problem ofmodelmisspecification of the user’s proposed parametric model. We also found that both the NP and the semiparametric methods result in charts with good abilities to detect changes in Phase I data, and in charts with easily calculated control limits. The proposed methods provide greater flexibility and efficiency when compared to parametric methods commonly used in profile monitoring for Phase I that rely on correct model specification, an unrealistic situation in many practical problems in industrial applications. An example using our techniques is also presented.
منابع مشابه
A robust wavelet based profile monitoring and change point detection using S-estimator and clustering
Some quality characteristics are well defined when treated as response variables and are related to some independent variables. This relationship is called a profile. Parametric models, such as linear models, may be used to model profiles. However, in practical applications due to the complexity of many processes it is not usually possible to model a process using parametric models.In these cas...
متن کاملPhase II logistic profile monitoring
In many industrial and non-industrial applications the quality of a process or product is characterized by a relationship between a response variable and one or more explanatory variables. This relationship is referred to as profile. In the past decade, profile monitoring has been extensively studied under the normal response variable, but it has paid a little attention to the profile with the ...
متن کاملSemiparametric estimation in general repeated measures problems
The paper considers a wide class of semiparametric problems with a parametric part for some covariate effects and repeated evaluations of a nonparametric function. Special cases in our approach include marginal models for longitudinal or clustered data, conditional logistic regression for matched case–control studies, multivariate measurement error models, generalized linear mixed models with a...
متن کاملPhase II monitoring of auto-correlated linear profiles using linear mixed model
In many circumstances, the quality of a process or product is best characterized by a given mathematical function between a response variable and one or more explanatory variables that is typically referred to as profile. There are some investigations to monitor auto-correlated linear and nonlinear profiles in recent years. In the present paper, we use the linear mixed models to account autocor...
متن کاملPhase-I monitoring of standard deviations in multistage linear profiles
In most modern manufacturing systems, products are often the output of some multistage processes. In these processes, the stages are dependent on each other, where the output quality of each stage depends also on the output quality of the previous stages. This property is called the cascade property. Although there are many studies in multistage process monitoring, there are fewer works on prof...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010